
Telecommunications
Network

Practice 6

1 / 17

Exercise I.
Write a proxy server.

The proxy should receive the requests from the TCP
calculator client.

It should forward all requests to the UDP calculator server.

It should also forward all responses coming from the
server to the client.

2 / 17

Exercise II.
Write a calculator client that asks a UDP server for the
address of the TCP server.

The client should send the b”Hello Server” bytestring to
the UDP server.

The server should reply with the address of the TCP
server, to which the client can send the numbers and the
operator.

3 / 17

Exercise III.
Write a proxy that will forward messages between a web browser and a web server.

The proxy should forward the browser’s requests to the server without change.

In the default case, the proxy should forward the server’s response to the browser as
well.

If the server’s response contains the string “SzamHalo”, then it should send a 404
error code instead.

Execution example:

In the browser: localhost:9000

python3 netProxy.py ggombos.web.elte.hu 9000

4 / 17

Exercise IV.
Consider the following parity technique:

Interpret n data bit as a k x l bit matrix.

Compute a partiy bit (odd parity) for every column and
extend our table with a row containing these new bits.

Send the data row by row.

Example (k = 2, l = 3):

1 0 1

0 1 1

0 0 1
5 / 17

Exercise IV.
How does this method behave in the case of simple bit
errors and in the case of burst-like errors if k = 3 and l = 4?
What is the maximal length of a bit sequence for which we
can guarantee the detection of errors?

Burst-like: Consequtive bits are faulty.

Extend the matrix with a new column containing a parity bit
for each row (two dimensional parity technique). How can
we use this technique to fix a single bit error? Can we use it
in the case of multiple faulty bits and burst-like errors?

6 / 17

CRC error detection
Source: Based on Tamás Lukovszki’s lectures

7 / 17

An example CRC calculation
Frame (𝑀(𝑥)): 1101011011

Generator (𝐺(𝑥)): 10011

Let’s perform the following division:

The remainder will be the CRC result.

11010110112

100112

8 / 17

Exercise V.
We have a generator polinomial

.

Compute the 4 bit CRC value of the following input:
.

This messages gets altered during transmission. The
receiver’s data link layer gets the following bit sequence:

.

Can we detect the errors that have happened with our
generator polinomial? If no, why not?

G(x) = + + x + 1x
4

x
3

11001010111011002

110010101101101001002

9 / 17

CRC and hashing in python
CRC

MD5

SHA1/SHA256

import binascii, zlib
test_string= "You must cut down the mightiest tree in the forest with a herring".encode('utf-8')
print(hex(binascii.crc32(bytearray(test_string))))
print(hex(zlib.crc32(test_string)))

import hashlib
test_string= "You must cut down the mightiest tree in the forest with a herring".encode('utf-8')
m = hashlib.md5()
m.update(test_string)
print(m.hexdigest())

import hashlib
test_string= "You must cut down the mightiest tree in the forest with a herring".encode('utf-8')
m = hashlib.sha1() #or hashlib.sha256
m.update(test_string)
print(m.hexdigest())

10 / 17

Assignment IV.
Netcopy

Description

11 / 17

https://ggombos.web.elte.hu/halobeadando/5-netcopy/

Assignment IV.
Write a netcopy client-server application, which is makes us able to transfer a file and
then check it’s integrity with CRC or MD5. We need to create three components/scripts:

Checksum server: Stores (file ID, checksum length, checksum, expiration (in
seconds)) entries.

Netcopy client: sends a file (given to it as a command line argument) to the server.
Throughout (or at the end of the) transfer it computes the CRC or MD5 checksum of
the file, then sends it to the Checksum server. The expiration should be 60 seconds.
The file ID is an integer, which should be given as a command line argument as well.

Netcopy server: It waits for the client to connect. Once the connection is established
it receives the bytes sent to it and stores them in a file given to it as a command line
argument. At the end of the transfer it asks the Checksum server for the checksum of
the file (based on the file ID) and checks the integrity of the file. It writes the result of
the check to the standard output. The file ID should be given as a command line
argument here as well.

12 / 17

Checksum server - TCP
Insert message

Format: text

Structure: BE|<file ID>|<expiration in seconds>|<checksum length in bytes>|<bytes of
the checksum>

“|” is the delimiter character

Example: BE|1237671|60|12|abcdefabcdef

In this case: the file ID: 1237671, the expiration is 60 seconds, the checksum is 12
bytes long and abcdefabcdef is the checksum itself

Response: OK

Query message

Format: text

Structure: KI|

“|” is the delimiter character
13 / 17

Checksum server - TCP
Query message (cont.)

Example: KI|1237671

We ask for the checksum that belongs to the file with file ID 1237671

Response: |

Example: 12|abcdefabcdef

If we don’t have a checksum for the given file ID, we send the following: 0|

The server runs in an infinte loop and is able to talk to multiple clients at the “same
time”. Use TCP for all communication and handle only the listed message types.

After the expiration the checksum entries should be deleted, but it’s okay to delete
them only when they are queried.

Arguments:

<ip> - e.g. localhost the ip address of the server

<port> - the port of the server

python3 checksum_srv.py <ip> <port>

14 / 17

Netcopy client – TCP
Operation:

Connects to the server. It gets it’s ip and port as command line arguments.

It sends the file’s bytes to the server.

Communicates with the Checksum server in the already described way.

After transfering the file and the checksum it terminates the connection and then
itself.

Arguments:

<file ID>: integer

<srv_ip> <srv_port>: the address of the netcopy server

<chsum_srv_ip> <chsum_srv_port>: the address of the Checksum server

python3 netcopy_cli.py <srv_ip> <srv_port> <chsum_srv_ip> <chsum_srv_port> <file ID> <filename with path>

15 / 17

Netcopy server – TCP
Operation:

It binds it’s socket to the address given to it as a command line argument.

Waits for a client.

Once the connection is established it receives the bytes of the file and stores them in
the file given to it as a command line argument.

Once it received the whole file it asks the Checksum server for the checksum and
checks the integrity of the file.

It communicates with the Checksum server in the already described way.

In case the checksums don’t match it writes the following to the standard output:
CSUM CORRUPTED

In case the checksums do match it writes the following: CSUM OK

Once it has received and checked the file it terminates.

16 / 17

Netcopy server – TCP
Arguments:

<file ID>: integer, same as in the case of the client – we use it to query the server for the
checksum

<srv_ip> <srv_port>: the address of the netcopy server – used for the binding of the
socket

<chsum_srv_ip> <chsum_srv_port>: the address of the Checksum server

<filename> : it writes the received bytes to this file

Submission: The program should be submitted through the TMS system in .zip format,
which contains a checksum_srv.py, a netcopy_cli.py and a netcopy_srv.py file.
Deadline: See TMS

python3 netcopy_srv.py <srv_ip> <srv_port> <chsum_srv_ip> <chsum_srv_port> <file ID> <filename with path>

17 / 17

