------------------------------------------------------------------------ -- The Agda standard library -- -- Basic types related to coinduction ------------------------------------------------------------------------ module Coinduction where import Level ------------------------------------------------------------------------ -- A type used to make recursive arguments coinductive infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} ------------------------------------------------------------------------ -- Rec, a type which is analogous to the Rec type constructor used in -- ΠΣ (see Altenkirch, Danielsson, Löh and Oury. ΠΣ: Dependent Types -- without the Sugar. FLOPS 2010, LNCS 6009.) data Rec {a} (A : ∞ (Set a)) : Set a where fold : (x : ♭ A) → Rec A unfold : ∀ {a} {A : ∞ (Set a)} → Rec A → ♭ A unfold (fold x) = x {- -- If --guardedness-preserving-type-constructors is enabled one can -- define types like ℕ by recursion: open import Data.Sum open import Data.Unit ℕ : Set ℕ = ⊤ ⊎ Rec (♯ ℕ) zero : ℕ zero = inj₁ _ suc : ℕ → ℕ suc n = inj₂ (fold n) ℕ-rec : (P : ℕ → Set) → P zero → (∀ n → P n → P (suc n)) → ∀ n → P n ℕ-rec P z s (inj₁ _) = z ℕ-rec P z s (inj₂ (fold n)) = s n (ℕ-rec P z s n) -- This feature is very experimental, though: it may lead to -- inconsistencies. -}