module Relation.Binary.PropositionalEquality where
open import Function
open import Function.Equality using (Π; _⟶_; ≡-setoid)
open import Data.Product
open import Data.Unit.NonEta
open import Level
open import Relation.Binary
import Relation.Binary.Indexed as I
open import Relation.Binary.Consequences
open import Relation.Binary.HeterogeneousEquality.Core as H using (_≅_)
open import Relation.Binary.Core public using (_≡_; refl; _≢_)
open import Relation.Binary.PropositionalEquality.Core public
subst₂ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p)
{x₁ x₂ y₁ y₂} → x₁ ≡ x₂ → y₁ ≡ y₂ → P x₁ y₁ → P x₂ y₂
subst₂ P refl refl p = p
cong : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B) {x y} → x ≡ y → f x ≡ f y
cong f refl = refl
cong-app : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} →
f ≡ g → (x : A) → f x ≡ g x
cong-app refl x = refl
cong₂ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
(f : A → B → C) {x y u v} → x ≡ y → u ≡ v → f x u ≡ f y v
cong₂ f refl refl = refl
proof-irrelevance : ∀ {a} {A : Set a} {x y : A} (p q : x ≡ y) → p ≡ q
proof-irrelevance refl refl = refl
setoid : ∀ {a} → Set a → Setoid _ _
setoid A = record
{ Carrier = A
; _≈_ = _≡_
; isEquivalence = isEquivalence
}
decSetoid : ∀ {a} {A : Set a} → Decidable (_≡_ {A = A}) → DecSetoid _ _
decSetoid dec = record
{ _≈_ = _≡_
; isDecEquivalence = record
{ isEquivalence = isEquivalence
; _≟_ = dec
}
}
isPreorder : ∀ {a} {A : Set a} → IsPreorder {A = A} _≡_ _≡_
isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = id
; trans = trans
}
preorder : ∀ {a} → Set a → Preorder _ _ _
preorder A = record
{ Carrier = A
; _≈_ = _≡_
; _∼_ = _≡_
; isPreorder = isPreorder
}
infix 4 _≗_
_→-setoid_ : ∀ {a b} (A : Set a) (B : Set b) → Setoid _ _
A →-setoid B = ≡-setoid A (Setoid.indexedSetoid (setoid B))
_≗_ : ∀ {a b} {A : Set a} {B : Set b} (f g : A → B) → Set _
_≗_ {A = A} {B} = Setoid._≈_ (A →-setoid B)
:→-to-Π : ∀ {a b₁ b₂} {A : Set a} {B : I.Setoid _ b₁ b₂} →
((x : A) → I.Setoid.Carrier B x) → Π (setoid A) B
:→-to-Π {B = B} f = record { _⟨$⟩_ = f; cong = cong′ }
where
open I.Setoid B using (_≈_)
cong′ : ∀ {x y} → x ≡ y → f x ≈ f y
cong′ refl = I.Setoid.refl B
→-to-⟶ : ∀ {a b₁ b₂} {A : Set a} {B : Setoid b₁ b₂} →
(A → Setoid.Carrier B) → setoid A ⟶ B
→-to-⟶ = :→-to-Π
module Deprecated-inspect where
data Inspect {a} {A : Set a} (x : A) : Set a where
_with-≡_ : (y : A) (eq : x ≡ y) → Inspect x
inspect : ∀ {a} {A : Set a} (x : A) → Inspect x
inspect x = x with-≡ refl
module Deprecated-inspect-on-steroids where
data Reveal_is_ {a} {A : Set a} (x : Hidden A) (y : A) : Set a where
[_] : (eq : reveal x ≡ y) → Reveal x is y
inspect : ∀ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) → Reveal (hide f x) is (f x)
inspect f x = [ refl ]
record Reveal_·_is_ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) (y : B x) :
Set (a ⊔ b) where
constructor [_]
field eq : f x ≡ y
inspect : ∀ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) → Reveal f · x is f x
inspect f x = [ refl ]
import Relation.Binary.EqReasoning as EqR
module ≡-Reasoning where
module _ {a} {A : Set a} where
open EqR (setoid A) public
hiding (_≡⟨_⟩_) renaming (_≈⟨_⟩_ to _≡⟨_⟩_)
infixr 2 _≅⟨_⟩_
_≅⟨_⟩_ : ∀ {a} {A : Set a} (x : A) {y z : A} →
x ≅ y → y IsRelatedTo z → x IsRelatedTo z
_ ≅⟨ x≅y ⟩ y≡z = _ ≡⟨ H.≅-to-≡ x≅y ⟩ y≡z
Extensionality : (a b : Level) → Set _
Extensionality a b =
{A : Set a} {B : A → Set b} {f g : (x : A) → B x} →
(∀ x → f x ≡ g x) → f ≡ g
extensionality-for-lower-levels :
∀ {a₁ b₁} a₂ b₂ →
Extensionality (a₁ ⊔ a₂) (b₁ ⊔ b₂) → Extensionality a₁ b₁
extensionality-for-lower-levels a₂ b₂ ext f≡g =
cong (λ h → lower ∘ h ∘ lift) $
ext (cong (lift {ℓ = b₂}) ∘ f≡g ∘ lower {ℓ = a₂})
∀-extensionality :
∀ {a b} →
Extensionality a (suc b) →
{A : Set a} (B₁ B₂ : A → Set b) →
(∀ x → B₁ x ≡ B₂ x) → (∀ x → B₁ x) ≡ (∀ x → B₂ x)
∀-extensionality ext B₁ B₂ B₁≡B₂ with ext B₁≡B₂
∀-extensionality ext B .B B₁≡B₂ | refl = refl