------------------------------------------------------------------------
-- The Agda standard library
--
-- Natural numbers
------------------------------------------------------------------------

module Data.Nat where

open import Function
open import Function.Equality as F using (_⟨$⟩_)
open import Function.Injection using (_↣_)
open import Data.Sum
open import Data.Empty
import Level
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
  using (_≡_; refl)

-- The core type and operations are re-exported from Data.Nat.Base
open import Data.Nat.Base public

------------------------------------------------------------------------
-- Queries

infix 4 _≟_ _≤?_

_≟_ : Decidable {A = } _≡_
zero   zero   = yes refl
suc m  suc n  with m  n
suc m  suc .m | yes refl = yes refl
suc m  suc n  | no prf   = no (prf  PropEq.cong pred)
zero   suc n  = no λ()
suc m  zero   = no λ()

≤-pred :  {m n}  suc m  suc n  m  n
≤-pred (s≤s m≤n) = m≤n

_≤?_ : Decidable _≤_
zero  ≤? _     = yes z≤n
suc m ≤? zero  = no λ()
suc m ≤? suc n with m ≤? n
...            | yes m≤n = yes (s≤s m≤n)
...            | no  m≰n = no  (m≰n  ≤-pred)

-- A comparison view. Taken from "View from the left"
-- (McBride/McKinna); details may differ.

data Ordering : Rel  Level.zero where
  less    :  m k  Ordering m (suc (m + k))
  equal   :  m    Ordering m m
  greater :  m k  Ordering (suc (m + k)) m

compare :  m n  Ordering m n
compare zero    zero    = equal   zero
compare (suc m) zero    = greater zero m
compare zero    (suc n) = less    zero n
compare (suc m) (suc n) with compare m n
compare (suc .m)           (suc .(suc m + k)) | less    m k = less    (suc m) k
compare (suc .m)           (suc .m)           | equal   m   = equal   (suc m)
compare (suc .(suc m + k)) (suc .m)           | greater m k = greater (suc m) k

-- If there is an injection from a type to ℕ, then the type has
-- decidable equality.

eq? :  {a} {A : Set a}  A    Decidable {A = A} _≡_
eq? inj = Dec.via-injection inj _≟_

------------------------------------------------------------------------
-- Some properties

decTotalOrder : DecTotalOrder _ _ _
decTotalOrder = record
  { Carrier         = 
  ; _≈_             = _≡_
  ; _≤_             = _≤_
  ; isDecTotalOrder = record
      { isTotalOrder = record
          { isPartialOrder = record
              { isPreorder = record
                  { isEquivalence = PropEq.isEquivalence
                  ; reflexive     = refl′
                  ; trans         = trans
                  }
              ; antisym  = antisym
              }
          ; total = total
          }
      ; _≟_  = _≟_
      ; _≤?_ = _≤?_
      }
  }
  where
  refl′ : _≡_  _≤_
  refl′ {zero}  refl = z≤n
  refl′ {suc m} refl = s≤s (refl′ refl)

  antisym : Antisymmetric _≡_ _≤_
  antisym z≤n       z≤n       = refl
  antisym (s≤s m≤n) (s≤s n≤m) with antisym m≤n n≤m
  ...                         | refl = refl

  trans : Transitive _≤_
  trans z≤n       _         = z≤n
  trans (s≤s m≤n) (s≤s n≤o) = s≤s (trans m≤n n≤o)

  total : Total _≤_
  total zero    _       = inj₁ z≤n
  total _       zero    = inj₂ z≤n
  total (suc m) (suc n) with total m n
  ...                   | inj₁ m≤n = inj₁ (s≤s m≤n)
  ...                   | inj₂ n≤m = inj₂ (s≤s n≤m)

import Relation.Binary.PartialOrderReasoning as POR
module ≤-Reasoning where
  open POR (DecTotalOrder.poset decTotalOrder) public
    renaming (_≈⟨_⟩_ to _≡⟨_⟩_)

  infixr 2 _<⟨_⟩_

  _<⟨_⟩_ :  x {y z}  x < y  y IsRelatedTo z  suc x IsRelatedTo z
  x <⟨ x<y  y≤z = suc x ≤⟨ x<y  y≤z