module Data.Nat where
open import Function
open import Function.Equality as F using (_⟨$⟩_)
open import Function.Injection using (_↣_)
open import Data.Sum
open import Data.Empty
import Level
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl)
open import Data.Nat.Base public
infix 4 _≟_ _≤?_
_≟_ : Decidable {A = ℕ} _≡_
zero ≟ zero = yes refl
suc m ≟ suc n with m ≟ n
suc m ≟ suc .m | yes refl = yes refl
suc m ≟ suc n | no prf = no (prf ∘ PropEq.cong pred)
zero ≟ suc n = no λ()
suc m ≟ zero = no λ()
≤-pred : ∀ {m n} → suc m ≤ suc n → m ≤ n
≤-pred (s≤s m≤n) = m≤n
_≤?_ : Decidable _≤_
zero ≤? _ = yes z≤n
suc m ≤? zero = no λ()
suc m ≤? suc n with m ≤? n
... | yes m≤n = yes (s≤s m≤n)
... | no m≰n = no (m≰n ∘ ≤-pred)
data Ordering : Rel ℕ Level.zero where
less : ∀ m k → Ordering m (suc (m + k))
equal : ∀ m → Ordering m m
greater : ∀ m k → Ordering (suc (m + k)) m
compare : ∀ m n → Ordering m n
compare zero zero = equal zero
compare (suc m) zero = greater zero m
compare zero (suc n) = less zero n
compare (suc m) (suc n) with compare m n
compare (suc .m) (suc .(suc m + k)) | less m k = less (suc m) k
compare (suc .m) (suc .m) | equal m = equal (suc m)
compare (suc .(suc m + k)) (suc .m) | greater m k = greater (suc m) k
eq? : ∀ {a} {A : Set a} → A ↣ ℕ → Decidable {A = A} _≡_
eq? inj = Dec.via-injection inj _≟_
decTotalOrder : DecTotalOrder _ _ _
decTotalOrder = record
{ Carrier = ℕ
; _≈_ = _≡_
; _≤_ = _≤_
; isDecTotalOrder = record
{ isTotalOrder = record
{ isPartialOrder = record
{ isPreorder = record
{ isEquivalence = PropEq.isEquivalence
; reflexive = refl′
; trans = trans
}
; antisym = antisym
}
; total = total
}
; _≟_ = _≟_
; _≤?_ = _≤?_
}
}
where
refl′ : _≡_ ⇒ _≤_
refl′ {zero} refl = z≤n
refl′ {suc m} refl = s≤s (refl′ refl)
antisym : Antisymmetric _≡_ _≤_
antisym z≤n z≤n = refl
antisym (s≤s m≤n) (s≤s n≤m) with antisym m≤n n≤m
... | refl = refl
trans : Transitive _≤_
trans z≤n _ = z≤n
trans (s≤s m≤n) (s≤s n≤o) = s≤s (trans m≤n n≤o)
total : Total _≤_
total zero _ = inj₁ z≤n
total _ zero = inj₂ z≤n
total (suc m) (suc n) with total m n
... | inj₁ m≤n = inj₁ (s≤s m≤n)
... | inj₂ n≤m = inj₂ (s≤s n≤m)
import Relation.Binary.PartialOrderReasoning as POR
module ≤-Reasoning where
open POR (DecTotalOrder.poset decTotalOrder) public
renaming (_≈⟨_⟩_ to _≡⟨_⟩_)
infixr 2 _<⟨_⟩_
_<⟨_⟩_ : ∀ x {y z} → x < y → y IsRelatedTo z → suc x IsRelatedTo z
x <⟨ x<y ⟩ y≤z = suc x ≤⟨ x<y ⟩ y≤z