open import Algebra
module Algebra.Operations {s₁ s₂} (S : Semiring s₁ s₂) where
open Semiring S renaming (zero to *-zero)
open import Data.Nat.Base
using (zero; suc; ℕ) renaming (_+_ to _ℕ+_; _*_ to _ℕ*_)
open import Data.Product using (module Σ)
open import Function
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)
import Relation.Binary.EqReasoning as EqR
open EqR setoid
infixr 7 _×_
_×_ : ℕ → Carrier → Carrier
0 × x = 0#
suc n × x = x + n × x
_×′_ : ℕ → Carrier → Carrier
0 ×′ x = 0#
1 ×′ x = x
suc n ×′ x = x + n ×′ x
infixr 8 _^_
_^_ : Carrier → ℕ → Carrier
x ^ zero = 1#
x ^ suc n = x * x ^ n
1+×′ : ∀ n x → suc n ×′ x ≈ x + n ×′ x
1+×′ 0 x = begin
x ≈⟨ sym $ Σ.proj₂ +-identity x ⟩
x + 0# ∎
1+×′ (suc n) x = begin
x + suc n ×′ x ≡⟨⟩
x + suc n ×′ x ∎
×≈×′ : ∀ n x → n × x ≈ n ×′ x
×≈×′ 0 x = begin 0# ∎
×≈×′ (suc n) x = begin
x + n × x ≈⟨ +-cong refl (×≈×′ n x) ⟩
x + n ×′ x ≈⟨ sym $ 1+×′ n x ⟩
suc n ×′ x ∎
×-homo-+ : ∀ c m n → (m ℕ+ n) × c ≈ m × c + n × c
×-homo-+ c 0 n = begin
n × c ≈⟨ sym $ Σ.proj₁ +-identity (n × c) ⟩
0# + n × c ∎
×-homo-+ c (suc m) n = begin
c + (m ℕ+ n) × c ≈⟨ +-cong refl (×-homo-+ c m n) ⟩
c + (m × c + n × c) ≈⟨ sym $ +-assoc c (m × c) (n × c) ⟩
c + m × c + n × c ∎
×′-homo-+ : ∀ c m n → (m ℕ+ n) ×′ c ≈ m ×′ c + n ×′ c
×′-homo-+ c m n = begin
(m ℕ+ n) ×′ c ≈⟨ sym $ ×≈×′ (m ℕ+ n) c ⟩
(m ℕ+ n) × c ≈⟨ ×-homo-+ c m n ⟩
m × c + n × c ≈⟨ +-cong (×≈×′ m c) (×≈×′ n c) ⟩
m ×′ c + n ×′ c ∎
×1-homo-* : ∀ m n → (m ℕ* n) × 1# ≈ (m × 1#) * (n × 1#)
×1-homo-* 0 n = begin
0# ≈⟨ sym $ Σ.proj₁ *-zero (n × 1#) ⟩
0# * (n × 1#) ∎
×1-homo-* (suc m) n = begin
(n ℕ+ m ℕ* n) × 1# ≈⟨ ×-homo-+ 1# n (m ℕ* n) ⟩
n × 1# + (m ℕ* n) × 1# ≈⟨ +-cong refl (×1-homo-* m n) ⟩
n × 1# + (m × 1#) * (n × 1#) ≈⟨ sym $ +-cong (Σ.proj₁ *-identity (n × 1#)) refl ⟩
1# * (n × 1#) + (m × 1#) * (n × 1#) ≈⟨ sym $ Σ.proj₂ distrib (n × 1#) 1# (m × 1#) ⟩
(1# + m × 1#) * (n × 1#) ∎
×′1-homo-* : ∀ m n → (m ℕ* n) ×′ 1# ≈ (m ×′ 1#) * (n ×′ 1#)
×′1-homo-* m n = begin
(m ℕ* n) ×′ 1# ≈⟨ sym $ ×≈×′ (m ℕ* n) 1# ⟩
(m ℕ* n) × 1# ≈⟨ ×1-homo-* m n ⟩
(m × 1#) * (n × 1#) ≈⟨ *-cong (×≈×′ m 1#) (×≈×′ n 1#) ⟩
(m ×′ 1#) * (n ×′ 1#) ∎
×-cong : _×_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_
×-cong {n} {n′} {x} {x′} n≡n′ x≈x′ = begin
n × x ≈⟨ reflexive $ PropEq.cong (λ n → n × x) n≡n′ ⟩
n′ × x ≈⟨ ×-congʳ n′ x≈x′ ⟩
n′ × x′ ∎
where
×-congʳ : ∀ n → (_×_ n) Preserves _≈_ ⟶ _≈_
×-congʳ 0 x≈x′ = refl
×-congʳ (suc n) x≈x′ = x≈x′ ⟨ +-cong ⟩ ×-congʳ n x≈x′
×′-cong : _×′_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_
×′-cong {n} {n′} {x} {x′} n≡n′ x≈x′ = begin
n ×′ x ≈⟨ sym $ ×≈×′ n x ⟩
n × x ≈⟨ ×-cong n≡n′ x≈x′ ⟩
n′ × x′ ≈⟨ ×≈×′ n′ x′ ⟩
n′ ×′ x′ ∎
^-cong : _^_ Preserves₂ _≈_ ⟶ _≡_ ⟶ _≈_
^-cong {x} {x'} {n} {n'} x≈x' n≡n' = begin
x ^ n ≈⟨ reflexive $ PropEq.cong (_^_ x) n≡n' ⟩
x ^ n' ≈⟨ ^-congˡ n' x≈x' ⟩
x' ^ n' ∎
where
^-congˡ : ∀ n → (λ x → x ^ n) Preserves _≈_ ⟶ _≈_
^-congˡ zero x≈x' = refl
^-congˡ (suc n) x≈x' = x≈x' ⟨ *-cong ⟩ ^-congˡ n x≈x'