module Data.Bool.Properties where
open import Data.Bool as Bool
open import Data.Fin
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence
using (_⇔_; equivalence; module Equivalence)
open import Algebra
open import Algebra.Structures
import Algebra.RingSolver.Simple as Solver
import Algebra.RingSolver.AlmostCommutativeRing as ACR
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl)
open P.≡-Reasoning
import Algebra.FunctionProperties as FP; open FP (_≡_ {A = Bool})
open import Data.Product
open import Data.Sum
open import Data.Empty
private
∨-assoc : Associative _∨_
∨-assoc true y z = refl
∨-assoc false y z = refl
∧-assoc : Associative _∧_
∧-assoc true y z = refl
∧-assoc false y z = refl
∨-comm : Commutative _∨_
∨-comm true true = refl
∨-comm true false = refl
∨-comm false true = refl
∨-comm false false = refl
∧-comm : Commutative _∧_
∧-comm true true = refl
∧-comm true false = refl
∧-comm false true = refl
∧-comm false false = refl
distrib-∧-∨ : _∧_ DistributesOver _∨_
distrib-∧-∨ = distˡ , distʳ
where
distˡ : _∧_ DistributesOverˡ _∨_
distˡ true y z = refl
distˡ false y z = refl
distʳ : _∧_ DistributesOverʳ _∨_
distʳ x y z =
begin
(y ∨ z) ∧ x
≡⟨ ∧-comm (y ∨ z) x ⟩
x ∧ (y ∨ z)
≡⟨ distˡ x y z ⟩
x ∧ y ∨ x ∧ z
≡⟨ P.cong₂ _∨_ (∧-comm x y) (∧-comm x z) ⟩
y ∧ x ∨ z ∧ x
∎
isCommutativeSemiring-∨-∧
: IsCommutativeSemiring _≡_ _∨_ _∧_ false true
isCommutativeSemiring-∨-∧ = record
{ +-isCommutativeMonoid = record
{ isSemigroup = record
{ isEquivalence = P.isEquivalence
; assoc = ∨-assoc
; ∙-cong = P.cong₂ _∨_
}
; identityˡ = λ _ → refl
; comm = ∨-comm
}
; *-isCommutativeMonoid = record
{ isSemigroup = record
{ isEquivalence = P.isEquivalence
; assoc = ∧-assoc
; ∙-cong = P.cong₂ _∧_
}
; identityˡ = λ _ → refl
; comm = ∧-comm
}
; distribʳ = proj₂ distrib-∧-∨
; zeroˡ = λ _ → refl
}
commutativeSemiring-∨-∧ : CommutativeSemiring _ _
commutativeSemiring-∨-∧ = record
{ _+_ = _∨_
; _*_ = _∧_
; 0# = false
; 1# = true
; isCommutativeSemiring = isCommutativeSemiring-∨-∧
}
module RingSolver =
Solver (ACR.fromCommutativeSemiring commutativeSemiring-∨-∧) _≟_
private
distrib-∨-∧ : _∨_ DistributesOver _∧_
distrib-∨-∧ = distˡ , distʳ
where
distˡ : _∨_ DistributesOverˡ _∧_
distˡ true y z = refl
distˡ false y z = refl
distʳ : _∨_ DistributesOverʳ _∧_
distʳ x y z =
begin
(y ∧ z) ∨ x
≡⟨ ∨-comm (y ∧ z) x ⟩
x ∨ (y ∧ z)
≡⟨ distˡ x y z ⟩
(x ∨ y) ∧ (x ∨ z)
≡⟨ P.cong₂ _∧_ (∨-comm x y) (∨-comm x z) ⟩
(y ∨ x) ∧ (z ∨ x)
∎
isCommutativeSemiring-∧-∨
: IsCommutativeSemiring _≡_ _∧_ _∨_ true false
isCommutativeSemiring-∧-∨ = record
{ +-isCommutativeMonoid = record
{ isSemigroup = record
{ isEquivalence = P.isEquivalence
; assoc = ∧-assoc
; ∙-cong = P.cong₂ _∧_
}
; identityˡ = λ _ → refl
; comm = ∧-comm
}
; *-isCommutativeMonoid = record
{ isSemigroup = record
{ isEquivalence = P.isEquivalence
; assoc = ∨-assoc
; ∙-cong = P.cong₂ _∨_
}
; identityˡ = λ _ → refl
; comm = ∨-comm
}
; distribʳ = proj₂ distrib-∨-∧
; zeroˡ = λ _ → refl
}
commutativeSemiring-∧-∨ : CommutativeSemiring _ _
commutativeSemiring-∧-∨ = record
{ _+_ = _∧_
; _*_ = _∨_
; 0# = true
; 1# = false
; isCommutativeSemiring = isCommutativeSemiring-∧-∨
}
private
absorptive : Absorptive _∨_ _∧_
absorptive = abs-∨-∧ , abs-∧-∨
where
abs-∨-∧ : _∨_ Absorbs _∧_
abs-∨-∧ true y = refl
abs-∨-∧ false y = refl
abs-∧-∨ : _∧_ Absorbs _∨_
abs-∧-∨ true y = refl
abs-∧-∨ false y = refl
not-∧-inverse : Inverse false not _∧_
not-∧-inverse =
¬x∧x≡⊥ , (λ x → ∧-comm x (not x) ⟨ P.trans ⟩ ¬x∧x≡⊥ x)
where
¬x∧x≡⊥ : LeftInverse false not _∧_
¬x∧x≡⊥ false = refl
¬x∧x≡⊥ true = refl
not-∨-inverse : Inverse true not _∨_
not-∨-inverse =
¬x∨x≡⊤ , (λ x → ∨-comm x (not x) ⟨ P.trans ⟩ ¬x∨x≡⊤ x)
where
¬x∨x≡⊤ : LeftInverse true not _∨_
¬x∨x≡⊤ false = refl
¬x∨x≡⊤ true = refl
isBooleanAlgebra : IsBooleanAlgebra _≡_ _∨_ _∧_ not true false
isBooleanAlgebra = record
{ isDistributiveLattice = record
{ isLattice = record
{ isEquivalence = P.isEquivalence
; ∨-comm = ∨-comm
; ∨-assoc = ∨-assoc
; ∨-cong = P.cong₂ _∨_
; ∧-comm = ∧-comm
; ∧-assoc = ∧-assoc
; ∧-cong = P.cong₂ _∧_
; absorptive = absorptive
}
; ∨-∧-distribʳ = proj₂ distrib-∨-∧
}
; ∨-complementʳ = proj₂ not-∨-inverse
; ∧-complementʳ = proj₂ not-∧-inverse
; ¬-cong = P.cong not
}
booleanAlgebra : BooleanAlgebra _ _
booleanAlgebra = record
{ _∨_ = _∨_
; _∧_ = _∧_
; ¬_ = not
; ⊤ = true
; ⊥ = false
; isBooleanAlgebra = isBooleanAlgebra
}
private
xor-is-ok : ∀ x y → x xor y ≡ (x ∨ y) ∧ not (x ∧ y)
xor-is-ok true y = refl
xor-is-ok false y = P.sym $ proj₂ CS.*-identity _
where module CS = CommutativeSemiring commutativeSemiring-∨-∧
commutativeRing-xor-∧ : CommutativeRing _ _
commutativeRing-xor-∧ = commutativeRing
where
import Algebra.Properties.BooleanAlgebra as BA
open BA booleanAlgebra
open XorRing _xor_ xor-is-ok
module XorRingSolver =
Solver (ACR.fromCommutativeRing commutativeRing-xor-∧) _≟_
not-involutive : Involutive not
not-involutive true = refl
not-involutive false = refl
not-¬ : ∀ {x y} → x ≡ y → x ≢ not y
not-¬ {true} refl ()
not-¬ {false} refl ()
¬-not : ∀ {x y} → x ≢ y → x ≡ not y
¬-not {true} {true} x≢y = ⊥-elim (x≢y refl)
¬-not {true} {false} _ = refl
¬-not {false} {true} _ = refl
¬-not {false} {false} x≢y = ⊥-elim (x≢y refl)
⇔→≡ : {b₁ b₂ b : Bool} → b₁ ≡ b ⇔ b₂ ≡ b → b₁ ≡ b₂
⇔→≡ {true } {true } hyp = refl
⇔→≡ {true } {false} {true } hyp = P.sym (Equivalence.to hyp ⟨$⟩ refl)
⇔→≡ {true } {false} {false} hyp = Equivalence.from hyp ⟨$⟩ refl
⇔→≡ {false} {true } {true } hyp = Equivalence.from hyp ⟨$⟩ refl
⇔→≡ {false} {true } {false} hyp = P.sym (Equivalence.to hyp ⟨$⟩ refl)
⇔→≡ {false} {false} hyp = refl
T-≡ : ∀ {b} → T b ⇔ b ≡ true
T-≡ {false} = equivalence (λ ()) (λ ())
T-≡ {true} = equivalence (const refl) (const _)
T-not-≡ : ∀ {b} → T (not b) ⇔ b ≡ false
T-not-≡ {false} = equivalence (const refl) (const _)
T-not-≡ {true} = equivalence (λ ()) (λ ())
T-∧ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) ⇔ (T b₁ × T b₂)
T-∧ {true} {true} = equivalence (const (_ , _)) (const _)
T-∧ {true} {false} = equivalence (λ ()) proj₂
T-∧ {false} {_} = equivalence (λ ()) proj₁
T-∨ : ∀ {b₁ b₂} → T (b₁ ∨ b₂) ⇔ (T b₁ ⊎ T b₂)
T-∨ {true} {b₂} = equivalence inj₁ (const _)
T-∨ {false} {true} = equivalence inj₂ (const _)
T-∨ {false} {false} = equivalence inj₁ [ id , id ]
proof-irrelevance : ∀ {b} (p q : T b) → p ≡ q
proof-irrelevance {true} _ _ = refl
proof-irrelevance {false} () ()
push-function-into-if :
∀ {a b} {A : Set a} {B : Set b} (f : A → B) x {y z} →
f (if x then y else z) ≡ (if x then f y else f z)
push-function-into-if _ true = P.refl
push-function-into-if _ false = P.refl