module Induction.Nat where
open import Function
open import Data.Nat
open import Data.Fin using (_≺_)
open import Data.Fin.Properties
open import Data.Product
open import Data.Unit
open import Induction
open import Induction.WellFounded as WF
open import Level using (Lift)
open import Relation.Binary.PropositionalEquality
open import Relation.Unary
Rec : ∀ ℓ → RecStruct ℕ ℓ ℓ
Rec _ P zero = Lift ⊤
Rec _ P (suc n) = P n
rec-builder : ∀ {ℓ} → RecursorBuilder (Rec ℓ)
rec-builder P f zero = _
rec-builder P f (suc n) = f n (rec-builder P f n)
rec : ∀ {ℓ} → Recursor (Rec ℓ)
rec = build rec-builder
CRec : ∀ ℓ → RecStruct ℕ ℓ ℓ
CRec _ P zero = Lift ⊤
CRec _ P (suc n) = P n × CRec _ P n
cRec-builder : ∀ {ℓ} → RecursorBuilder (CRec ℓ)
cRec-builder P f zero = _
cRec-builder P f (suc n) = f n ih , ih
where ih = cRec-builder P f n
cRec : ∀ {ℓ} → Recursor (CRec ℓ)
cRec = build cRec-builder
<-Rec : ∀ {ℓ} → RecStruct ℕ ℓ ℓ
<-Rec = WfRec _<′_
mutual
<-well-founded : Well-founded _<′_
<-well-founded n = acc (<-well-founded′ n)
<-well-founded′ : ∀ n → <-Rec (Acc _<′_) n
<-well-founded′ zero _ ()
<-well-founded′ (suc n) .n ≤′-refl = <-well-founded n
<-well-founded′ (suc n) m (≤′-step m<n) = <-well-founded′ n m m<n
module _ {ℓ} where
open WF.All <-well-founded ℓ public
renaming ( wfRec-builder to <-rec-builder
; wfRec to <-rec
)
≺-Rec : ∀ {ℓ} → RecStruct ℕ ℓ ℓ
≺-Rec = WfRec _≺_
≺-well-founded : Well-founded _≺_
≺-well-founded = Subrelation.well-founded ≺⇒<′ <-well-founded
module _ {ℓ} where
open WF.All ≺-well-founded ℓ public
renaming ( wfRec-builder to ≺-rec-builder
; wfRec to ≺-rec
)
private
module Examples where
twice : ℕ → ℕ
twice = rec _ λ
{ zero _ → zero
; (suc n) twice-n → suc (suc twice-n)
}
mutual
half₁-step = λ
{ zero _ → zero
; (suc zero) _ → zero
; (suc (suc n)) (_ , half₁n , _) → suc half₁n
}
half₁ : ℕ → ℕ
half₁ = cRec _ half₁-step
mutual
half₂-step = λ
{ zero _ → zero
; (suc zero) _ → zero
; (suc (suc n)) rec → suc (rec n (≤′-step ≤′-refl))
}
half₂ : ℕ → ℕ
half₂ = <-rec _ half₂-step
half₁-2+ : ∀ n → half₁ (2 + n) ≡ 1 + half₁ n
half₁-2+ n = begin
half₁ (2 + n) ≡⟨⟩
cRec (λ _ → ℕ) half₁-step (2 + n) ≡⟨⟩
half₁-step (2 + n) (cRec-builder (λ _ → ℕ) half₁-step (2 + n)) ≡⟨⟩
half₁-step (2 + n)
(let ih = cRec-builder (λ _ → ℕ) half₁-step (1 + n) in
half₁-step (1 + n) ih , ih) ≡⟨⟩
half₁-step (2 + n)
(let ih = cRec-builder (λ _ → ℕ) half₁-step n in
half₁-step (1 + n) (half₁-step n ih , ih) , half₁-step n ih , ih) ≡⟨⟩
1 + half₁-step n (cRec-builder (λ _ → ℕ) half₁-step n) ≡⟨⟩
1 + cRec (λ _ → ℕ) half₁-step n ≡⟨⟩
1 + half₁ n ∎
where open ≡-Reasoning
half₂-2+ : ∀ n → half₂ (2 + n) ≡ 1 + half₂ n
half₂-2+ n = begin
half₂ (2 + n) ≡⟨⟩
<-rec (λ _ → ℕ) half₂-step (2 + n) ≡⟨⟩
half₂-step (2 + n) (<-rec-builder (λ _ → ℕ) half₂-step (2 + n)) ≡⟨⟩
1 + <-rec-builder (λ _ → ℕ) half₂-step (2 + n) n (≤′-step ≤′-refl) ≡⟨⟩
1 + Some.wfRec-builder (λ _ → ℕ) half₂-step (2 + n)
(<-well-founded (2 + n)) n (≤′-step ≤′-refl) ≡⟨⟩
1 + Some.wfRec-builder (λ _ → ℕ) half₂-step (2 + n)
(acc (<-well-founded′ (2 + n))) n (≤′-step ≤′-refl) ≡⟨⟩
1 + half₂-step n
(Some.wfRec-builder (λ _ → ℕ) half₂-step n
(<-well-founded′ (2 + n) n (≤′-step ≤′-refl))) ≡⟨⟩
1 + half₂-step n
(Some.wfRec-builder (λ _ → ℕ) half₂-step n
(<-well-founded′ (1 + n) n ≤′-refl)) ≡⟨⟩
1 + half₂-step n
(Some.wfRec-builder (λ _ → ℕ) half₂-step n (<-well-founded n)) ≡⟨⟩
1 + half₂-step n (<-rec-builder (λ _ → ℕ) half₂-step n) ≡⟨⟩
1 + <-rec (λ _ → ℕ) half₂-step n ≡⟨⟩
1 + half₂ n ∎
where open ≡-Reasoning
half₁-+₁ : ∀ n → half₁ (twice n) ≡ n
half₁-+₁ = cRec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) (_ , half₁twice-n≡n , _) →
cong (suc ∘ suc) half₁twice-n≡n
}
half₂-+₁ : ∀ n → half₂ (twice n) ≡ n
half₂-+₁ = cRec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) (_ , half₁twice-n≡n , _) →
cong (suc ∘ suc) half₁twice-n≡n
}
half₁-+₂ : ∀ n → half₁ (twice n) ≡ n
half₁-+₂ = <-rec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) rec →
cong (suc ∘ suc) (rec n (≤′-step ≤′-refl))
}
half₂-+₂ : ∀ n → half₂ (twice n) ≡ n
half₂-+₂ = <-rec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) rec →
cong (suc ∘ suc) (rec n (≤′-step ≤′-refl))
}