module Relation.Binary.HeterogeneousEquality where
open import Data.Product
open import Function
open import Function.Inverse using (Inverse)
open import Data.Unit.NonEta
open import Level
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.Consequences
open import Relation.Binary.Indexed as I using (_at_)
open import Relation.Binary.PropositionalEquality as P using (_≡_; refl)
import Relation.Binary.HeterogeneousEquality.Core as Core
infix 4 _≇_
open Core public using (_≅_; refl)
_≇_ : ∀ {ℓ} {A : Set ℓ} → A → {B : Set ℓ} → B → Set ℓ
x ≇ y = ¬ x ≅ y
≡-to-≅ : ∀ {a} {A : Set a} {x y : A} → x ≡ y → x ≅ y
≡-to-≅ refl = refl
open Core public using (≅-to-≡)
reflexive : ∀ {a} {A : Set a} → _⇒_ {A = A} _≡_ (λ x y → x ≅ y)
reflexive refl = refl
sym : ∀ {ℓ} {A B : Set ℓ} {x : A} {y : B} → x ≅ y → y ≅ x
sym refl = refl
trans : ∀ {ℓ} {A B C : Set ℓ} {x : A} {y : B} {z : C} →
x ≅ y → y ≅ z → x ≅ z
trans refl eq = eq
subst : ∀ {a} {A : Set a} {p} → Substitutive {A = A} (λ x y → x ≅ y) p
subst P refl p = p
subst₂ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) →
∀ {x₁ x₂ y₁ y₂} → x₁ ≅ x₂ → y₁ ≅ y₂ → P x₁ y₁ → P x₂ y₂
subst₂ P refl refl p = p
subst-removable : ∀ {a p} {A : Set a}
(P : A → Set p) {x y} (eq : x ≅ y) z →
subst P eq z ≅ z
subst-removable P refl z = refl
≡-subst-removable : ∀ {a p} {A : Set a}
(P : A → Set p) {x y} (eq : x ≡ y) z →
P.subst P eq z ≅ z
≡-subst-removable P refl z = refl
cong : ∀ {a b} {A : Set a} {B : A → Set b} {x y}
(f : (x : A) → B x) → x ≅ y → f x ≅ f y
cong f refl = refl
cong-app : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} →
f ≅ g → (x : A) → f x ≅ g x
cong-app refl x = refl
cong₂ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c}
{x y u v}
(f : (x : A) (y : B x) → C x y) → x ≅ y → u ≅ v → f x u ≅ f y v
cong₂ f refl refl = refl
resp₂ : ∀ {a ℓ} {A : Set a} (∼ : Rel A ℓ) → ∼ Respects₂ (λ x y → x ≅ y)
resp₂ _∼_ = subst⟶resp₂ _∼_ subst
proof-irrelevance : ∀ {ℓ} {A B : Set ℓ} {x : A} {y : B}
(p q : x ≅ y) → p ≡ q
proof-irrelevance refl refl = refl
isEquivalence : ∀ {a} {A : Set a} →
IsEquivalence {A = A} (λ x y → x ≅ y)
isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
setoid : ∀ {a} → Set a → Setoid _ _
setoid A = record
{ Carrier = A
; _≈_ = λ x y → x ≅ y
; isEquivalence = isEquivalence
}
indexedSetoid : ∀ {a b} {A : Set a} → (A → Set b) → I.Setoid A _ _
indexedSetoid B = record
{ Carrier = B
; _≈_ = λ x y → x ≅ y
; isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
}
≡↔≅ : ∀ {a b} {A : Set a} (B : A → Set b) {x : A} →
Inverse (P.setoid (B x)) (indexedSetoid B at x)
≡↔≅ B = record
{ to = record { _⟨$⟩_ = id; cong = ≡-to-≅ }
; from = record { _⟨$⟩_ = id; cong = ≅-to-≡ }
; inverse-of = record
{ left-inverse-of = λ _ → refl
; right-inverse-of = λ _ → refl
}
}
decSetoid : ∀ {a} {A : Set a} →
Decidable {A = A} {B = A} (λ x y → x ≅ y) →
DecSetoid _ _
decSetoid dec = record
{ _≈_ = λ x y → x ≅ y
; isDecEquivalence = record
{ isEquivalence = isEquivalence
; _≟_ = dec
}
}
isPreorder : ∀ {a} {A : Set a} →
IsPreorder {A = A} (λ x y → x ≅ y) (λ x y → x ≅ y)
isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = id
; trans = trans
}
isPreorder-≡ : ∀ {a} {A : Set a} →
IsPreorder {A = A} _≡_ (λ x y → x ≅ y)
isPreorder-≡ = record
{ isEquivalence = P.isEquivalence
; reflexive = reflexive
; trans = trans
}
preorder : ∀ {a} → Set a → Preorder _ _ _
preorder A = record
{ Carrier = A
; _≈_ = _≡_
; _∼_ = λ x y → x ≅ y
; isPreorder = isPreorder-≡
}
module ≅-Reasoning where
infix 4 _IsRelatedTo_
infix 2 _∎
infixr 2 _≅⟨_⟩_ _≡⟨_⟩_ _≡⟨⟩_
infix 1 begin_
data _IsRelatedTo_ {ℓ} {A : Set ℓ} (x : A) {B : Set ℓ} (y : B) :
Set ℓ where
relTo : (x≅y : x ≅ y) → x IsRelatedTo y
begin_ : ∀ {ℓ} {A : Set ℓ} {x : A} {B} {y : B} →
x IsRelatedTo y → x ≅ y
begin relTo x≅y = x≅y
_≅⟨_⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {B} {y : B} {C} {z : C} →
x ≅ y → y IsRelatedTo z → x IsRelatedTo z
_ ≅⟨ x≅y ⟩ relTo y≅z = relTo (trans x≅y y≅z)
_≡⟨_⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {y C} {z : C} →
x ≡ y → y IsRelatedTo z → x IsRelatedTo z
_ ≡⟨ x≡y ⟩ relTo y≅z = relTo (trans (reflexive x≡y) y≅z)
_≡⟨⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {B} {y : B} →
x IsRelatedTo y → x IsRelatedTo y
_ ≡⟨⟩ x≅y = x≅y
_∎ : ∀ {a} {A : Set a} (x : A) → x IsRelatedTo x
_∎ _ = relTo refl
Extensionality : (a b : Level) → Set _
Extensionality a b =
{A : Set a} {B₁ B₂ : A → Set b}
{f₁ : (x : A) → B₁ x} {f₂ : (x : A) → B₂ x} →
(∀ x → B₁ x ≡ B₂ x) → (∀ x → f₁ x ≅ f₂ x) → f₁ ≅ f₂
≡-ext-to-≅-ext : ∀ {ℓ₁ ℓ₂} →
P.Extensionality ℓ₁ (suc ℓ₂) → Extensionality ℓ₁ ℓ₂
≡-ext-to-≅-ext ext B₁≡B₂ f₁≅f₂ with ext B₁≡B₂
≡-ext-to-≅-ext {ℓ₁} {ℓ₂} ext B₁≡B₂ f₁≅f₂ | P.refl =
≡-to-≅ $ ext′ (≅-to-≡ ∘ f₁≅f₂)
where
ext′ : P.Extensionality ℓ₁ ℓ₂
ext′ = P.extensionality-for-lower-levels ℓ₁ (suc ℓ₂) ext
module Deprecated-inspect-on-steroids where
data Reveal_is_ {a} {A : Set a} (x : Hidden A) (y : A) : Set a where
[_] : (eq : reveal x ≡ y) → Reveal x is y
inspect : ∀ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) → Reveal (hide f x) is (f x)
inspect f x = [ refl ]
record Reveal_·_is_ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) (y : B x) :
Set (a ⊔ b) where
constructor [_]
field eq : f x ≅ y
inspect : ∀ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) → Reveal f · x is f x
inspect f x = [ refl ]