module Application.Algebra where open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; setoid) import Relation.Binary.EqReasoning as EqR
Let A
be a type and let _∙_
be a binary operation on A
. A
with _∙_
forms a semigroup iff _∙_
is associative.
We can model the semigroup proposition as follows:
record IsSemigroup {A : Set} (_∙_ : A → A → A) : Set where field assoc : ∀ x y z → ((x ∙ y) ∙ z) ≡ (x ∙ (y ∙ z))
Prove that ℕ
with _+_
forms a semigroup!
ℕ+-isSemigroup : IsSemigroup _+_
Usage example:
module Usage₁ where open IsSemigroup ex : ∀ n → (n + 1) + 1 ≡ n + 2 ex n = assoc ℕ+-isSemigroup n 1 1
With applied module opening:
module Usage₂ where open IsSemigroup ℕ+-isSemigroup ex : ∀ n → (n + 1) + 1 ≡ n + 2 ex n = assoc n 1 1
With local module opening:
module Usage₃ where ex : ∀ n → (n + 1) + 1 ≡ n + 2 ex n = assoc n 1 1 where open IsSemigroup ℕ+-isSemigroup
IsMonoid {A} _∙_ ε
represents the proposition that (A
, _∙_
, ε
) is a monoid:
record IsMonoid {A : Set} (_∙_ : A → A → A) (ε : A) : Set where field isSemigroup : IsSemigroup _∙_ identity : (∀ x → (ε ∙ x) ≡ x) × (∀ x → (x ∙ ε) ≡ x) open IsSemigroup isSemigroup public
Public opening at the end makes usage of IsMonoid
easier.
Prove that (ℕ
, _+_
, 0
) forms a monoid!
ℕ+0-isMonoid : IsMonoid _+_ 0
Usage example:
module Usage₄ where ex : ∀ n → (n + 0) + n ≡ n + n ex n = cong (λ x → x + n) (proj₂ identity n) where open IsMonoid ℕ+0-isMonoid ex′ : ∀ n → (n + 0) + n ≡ n + n ex′ n = assoc n 0 n where open IsMonoid ℕ+0-isMonoid -- we opened IsMonoid, not IsSemigroup
Instead of A → A → A
we can write Op₂ A
if we define
Op₂ : Set → Set Op₂ A = A → A → A
Thus we can write
record IsSemigroup′ {A : Set} (_∙_ : Op₂ A) : Set where field assoc : ∀ x y z → ((x ∙ y) ∙ z) ≡ (x ∙ (y ∙ z))
Define the type of unary operations as Op₁
!
We can name functions properties like
Associative : {A : Set} → Op₂ A → Set Associative _∙_ = ∀ x y z → ((x ∙ y) ∙ z) ≡ (x ∙ (y ∙ z))
After this definition we can write
record IsSemigroup″ {A : Set} (_∙_ : Op₂ A) : Set where field assoc : Associative _∙_
Define the following function properties!
Commutative : {A : Set} → Op₂ A → Set _
The first parameter of LeftIdentity
is the neutral element.
LeftIdentity : {A : Set} → A → Op₂ A → Set _
RightIdentity : {A : Set} → A → Op₂ A → Set _
Identity : {A : Set} → A → Op₂ A → Set _
Consider the following definition of the commutative monoid proposition:
record IsCommutativeMonoid′ {A : Set} (_∙_ : A → A → A) (ε : A) : Set where field isMonoid : IsMonoid _∙_ ε comm : Commutative _∙_
This definition is correct, but redundant because commutativity and left identity properties entail the right identity property.
A non-redundant and still easy-to-use definition is the following:
record IsCommutativeMonoid {A : Set} (_∙_ : A → A → A) (ε : A) : Set where field isSemigroup : IsSemigroup _∙_ identityˡ : LeftIdentity ε _∙_ comm : Commutative _∙_ open IsSemigroup isSemigroup public identity : Identity ε _∙_ identity = (identityˡ , identityʳ) where open EqR (setoid A) identityʳ : RightIdentity ε _∙_ identityʳ = λ x → begin (x ∙ ε) ≈⟨ comm x ε ⟩ (ε ∙ x) ≈⟨ identityˡ x ⟩ x ∎ isMonoid : IsMonoid _∙_ ε isMonoid = record { isSemigroup = isSemigroup ; identity = identity }
IsCommutativeMonoid
, we should provide the semigroup, left identity and commutativity properties.IsCommutativeMonoid
, we have semigroup, associativity, monoid, identity and commutativity properties.Define the group property!
Define the abelian group property!
We can define the type of semigroups as
record Semigroup : Set₁ where infixl 7 _∙_ field Carrier : Set _∙_ : Op₂ Carrier isSemigroup : IsSemigroup _∙_ open IsSemigroup isSemigroup public
Prove that (ℕ, +) is a semigroup (by proving that there is a corresponding element of Semigroup
)!
Define the types of all monoids as a record with fields Carrier
, _∙_
, ε
and isMonoid
!
We can define the multiplication by a natural number in any monoid:
module MonoidOperations (m : Monoid) where open Monoid m infixr 7 _×′_ _×′_ : ℕ → Carrier → Carrier 0 ×′ x = ε suc n ×′ x = x ∙ (n ×′ x)
You can find the given definitions in the following Standard Library modules:
import Algebra.FunctionProperties using (Op₁; Op₂) import Algebra.FunctionProperties using (Associative; Commutative; LeftIdentity; RightIdentity; Identity) -- and more function properties import Algebra.Structures using (IsSemigroup; IsMonoid; IsCommutativeMonoid) -- and more import Algebra using (Semigroup; Monoid; CommutativeMonoid) -- and more import Algebra.Operations -- some defined operations import Data.Nat.Properties using (isCommutativeSemiring) -- this contains definitions like ℕ+0-isMonoid
Notable differences
_≡_
to an arbitrary equivalence relation.Example usage
module StdLibUsage where open import Algebra.Structures as A using (IsCommutativeMonoid) open import Data.Nat.Properties using (isCommutativeSemiring) open A.IsCommutativeSemiring open A.IsCommutativeMonoid (+-isCommutativeMonoid isCommutativeSemiring) ex : ∀ n → (n + 1) + 1 ≡ n + 2 ex n = assoc n 1 1